



#### Maternal Anemia and Blood Loss at Childbirth and Postpartum in Zanzibar, Tanzania

#### MCHIP Nutrition Brown Bag

March 28, 2013

Justine A. Kavle, PhD, MPH

Senior Program Officer for Nutrition, MCHIP



# Acknowledgements:

- Ministry of Health, Public Health Laboratory Ivo de Carneri, Mama na Afya study staff in Zanzibar, Tanzania
- Dr. Rebecca Stoltzfus, Cornell University, Division of Nutritional Sciences,
- Dr. Jim Tielsch, Dr. Laura Caulfield, Department of International Health, Johns Hopkins Bloomberg School of Public Health
- Dr. Frank Witter, Johns Hopkins University, School of Medicine
- Gates Foundation
- World Health Organization (WHO)





#### Hemorrhage (PPH) is the leading cause of maternal death Anemia has been thought to underlie PPH



Khan et al, WHO systematic review 2006





#### Data is scant on maternal deaths due to PPH in Africa

(Khan, WHO systematic review, 2006)



Maternal anemia is associated with poor birth outcomes, pregnancy complications and death

- Moderate to severe maternal anemia is associated with low birth weight and preterm deliveries
- Severe anemia is a cause of maternal mortality due to:
  - Heart failure
  - Excessive blood loss at delivery





#### Proposed biological mechanisms that play a role in PPH Anemia is a plausible pathway

- Higher blood loss attributed to impaired uterine muscle strength for labor when prolonged
- Decreased resistance to infection, as infection may contribute to uterine dysfunction or inertia
- Decreased uterine blood flow or low uterine muscle strength may trigger inefficient uterine contractions, mediated by low body iron stores (serum ferritin) and iron deficiency anemia





Animal model, anecdotal evidence





# What we know and don't know about anemia, PPH, and maternal mortality

- PPH is the leading cause of maternal death
- Yet, most women survive PPH and likely suffer morbidities affecting productivity and care practices, and they may become or remain anemic postpartum
- Lack of evidence in less developed countries, on the relationship between maternal anemia and blood lost at childbirth
- Need for such data in a setting where maternal mortality and severe anemia are prevalent





# We addressed the following unanswered questions:

- What is the distribution of blood loss at childbirth and postpartum in less-developed countries where 99% of maternal deaths occur? How much do women actually lose?
- Can a <u>reliable and valid measurement</u> technique be utilized to measure blood loss at childbirth and postpartum in a lessdeveloped country?
- Do women lose more blood at childbirth and postpartum in areas where maternal mortality and severe anemia are prevalent, as in east Africa?
- What are the <u>risk factors or determinants</u> for greater blood loss at childbirth and postpartum? Is anemia related?





Maternal and Child Health Integrated Program

#### Mothers and Health "Mama na Afya" community-based trial Prevention and Treatment of Severe Anemia in Pregnancy





### Study site: Northern Pemba Island, Zanzibar



FROM THE AMERICAN PEOPLE

\*

2008 estimate, Hogan et al, 2010, Lancet

Maternal mortality rate:449\* Staple foods:

rice, cassava

**Population:** 

~300,000,

Muslim

P. falciparum malaria and soiltransmitted helminths endemic

# Treatment groups: preventing and treating maternal anemia

#### **Standard of Care**

- Iron folic-acid (60 mg,400 ug), daily
- Anti-malarial: SP 2 doses
- One dose deworming: 500 mg mebendazole

### **Enhanced Care**

- Iron folic-acid, daily
- Antimalarial: SP 2 doses
- Two dose deworming: 100 mg mebendazole, twice a day, 3 days
- Multivitamin (Vitamin A, C, E, B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub>, B<sub>5</sub>, B<sub>6</sub>, B<sub>12</sub>, folate)





#### Data collection was conducted in ANC clinics and through home visits



- Obstetric history
- Socioeconomic status
- Maternal morbidity
- Food Frequency
- Clinical Exam, treatments

- Pregnancy outcome
- Infant status
- Deliver treatments
- Compliance
- Birth weight

#### Mothers and Health study and Blood Loss Sub-study (2004-2005)



#### **Research Aim 1**

To determine the distribution of blood loss at childbirth and 24-hours postpartum, utilizing the alkaline hematin technique





Diagnosing blood loss at childbirth is a challenge due to measurement

- Health workers rely on visual approximation for deciding if the amount of blood loss at childbirth is excessive
  - 30-50% under-estimation of blood loss
  - Can delay diagnosis, referral, and treatment
- Lack of consensus in research studies
  - No standard definition of excessive blood loss
  - Cutoff, duration and methods of measurement differ







### Gold standard for measurement: alkaline hematin method

- Alkaline hematin method is the most widely used and most accurate method for objective quantification of blood loss in women
- Simple, reliable, practical
- A few early studies used alkaline hematin to quantify excessive menstrual bleeding and blood loss at childbirth and none in developing country settings





Using the gold standard – the alkaline hematin method to accurately quantify blood loss at childbirth and postpartum At delivery and 24 hours postpartum in Wete Hospital:

|                                                                               |                     |                                                             |    |                                                 | 85%<br>recovery<br>rate |
|-------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|----|-------------------------------------------------|-------------------------|
| Collect pads at<br>childbirth and<br>postpartum, dilute<br>with NaOH solution | in blood loss       | Denature hemoglobin<br>in blood loss to<br>alkaline hematin |    | Measure<br>concentration of<br>alkaline hematin | Compute<br>blood loss   |
| At <u>&gt;</u> 34 weeks gestati                                               | onal age:           |                                                             |    |                                                 | at<br>childbirth        |
|                                                                               | Dilute with<br>NaOH |                                                             | 5  |                                                 |                         |
| Collect venous                                                                |                     | 17                                                          | Me | easure concentratio                             | n                       |

Collect venous blood

17

Measure concentration of alkaline hematin

#### Distribution of blood loss was lower in hospital-based deliveries (N= 158)







# Why was blood loss at childbirth and postpartum lower than expected?

- No complications of 3<sup>rd</sup> stage of labor
- Only two case of prolonged labor (3<sup>rd</sup> stage > 30 min.)
- Incidence of PPH low (5%)
- Breastfeeding following birth is universal
- Active management of third stage of labor (AMTSL) routinely practiced in hospital-based deliveries



# Nurse-midwives estimated blood loss accurately, when compared to laboratory measurements, yet had lower precision at higher losses



#### Research Aim 2

To evaluate the determinants of blood loss at childbirth, and 24- hours postpartum, specifically focusing upon the purported relationship between maternal anemia and blood loss at childbirth and postpartum





# Little is known about factors which contribute to excessive blood loss at childbirth in less developed countries

- Nulliparity
- Grand multiparity
- Cervical trauma
- Maternal obesity
- Maternal anemia
- Instrumental delivery
- Induced labor
- Prolonged labor
- Third stage complications
- Pre- eclampsia
- Previous history of PPH
- Birth weight > 4000 grams





### **Statistical Methods**

- Outcome: Total blood loss (mL) childbirth and postpartum
- Bi-variate analyses
  - Nutritional factors
  - Socioeconomic factors
  - Obstetrical factors
- Multivariate regression analyses
  - Factors p< 0.10 in bi-variate analyses</li>
  - Factors identified in previous literature





#### Selected background characteristics Zanzibari women, Wete town (N = 158)

| Basic characteristics                                                                                                | 50 <sup>th</sup> (5 <sup>th</sup> , 95 <sup>th</sup> ) or % |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Age (years)                                                                                                          | 25.5 (18.0 - 38.0)                                          |
| Gestational age (weeks)                                                                                              | 29.0 (20.0 - 37.0)                                          |
| Hemoglobin category<br>No anemia (Hb >110 g/L)<br>Mild anemia (Hb 90-109 g/L)<br>Moderate to severe anemia (<90 g/L) | 38.6<br>45.6<br>15.8                                        |
| Parity<br>0<br>1<br>2-5<br><u>≥</u> 5                                                                                | 21.5<br>15.2<br>37.3<br>25.9                                |
| Not employed                                                                                                         | 80%                                                         |
| Malarial infection; intestinal helminths                                                                             | Low rate                                                    |

#### Selected labor and delivery characteristics, Zanzibari women, Wete town (N= 158)

| Characteristics at childbirth             | 50 <sup>th</sup> (5 <sup>th</sup> , 95 <sup>th</sup> ) or % |             |
|-------------------------------------------|-------------------------------------------------------------|-------------|
| Received oxytocin                         | 44.9                                                        |             |
| Received ergometrine                      | 95.6                                                        |             |
| Received oxytocin and ergometrine         | 40.5                                                        |             |
| Tear                                      | 7.6                                                         |             |
| Episiotomy                                | 16.5                                                        |             |
| Gestational age (weeks)                   | 39.1 (36.4 – 43.5)                                          |             |
| Birthweight (grams)*                      | 3,410 <u>+</u> 434                                          |             |
| * Mean <u>+</u> SD, singleton births only |                                                             | Kavle, 2006 |

#### Determinants for total blood loss: childbirth and 24-hrs postpartum

| Independent variable                      | β estimate | SEM   | p-value |
|-------------------------------------------|------------|-------|---------|
| Moderate - severe anemia vs.<br>no anemia | 90.63      | 28.38 | 0.002   |
| Mild anemia vs no anemia                  | 11.47      | 20.51 | NS      |
| First stage of labor (hr)                 | 7.09       | 2.79  | 0.012   |
| Placental weight (grams)                  | 0.11       | 0.05  | 0.030   |
| Oxytocin received                         | 39.64      | 19.66 | 0.046   |
| Pre-term birth < 37 weeks                 | -52.52     | 29.91 | 0.081   |

\*NS = not significant p > 0.10

Kavle, 2008

#### Determinants for total blood loss: childbirth and 24-hrs postpartum

| Independent variable             | β estimate | SEM   | p-value |
|----------------------------------|------------|-------|---------|
| Parity (0, Reference)            |            |       |         |
| 1                                | 34.19      | 34.18 | NS      |
| 2 - 5                            | 30.34      | 32.99 | NS      |
| <u>&gt;</u> 5                    | 59.61      | 35.17 | 0.09    |
| Tear                             | 25.01      | 37.61 | NS      |
| Episiotomy                       | 18.77      | 34.00 | NS      |
| Standard of Care vs.<br>Enhanced | 1.90       | 19.32 | NS      |

\*NS = not significant p > 0.10

Kavle, 2008

Identified maternal anemia as determinant of blood loss, supports hypothesized relationship

Strong relationship between maternal anemia and blood loss

- Influence of maternal anemia on blood loss is more pervasive - affects a normal range of losses
- Relationships persisted following adjustment of confounding factors
- Internal validity due to rigorous prospective data collection of women during pregnancy delivery and postpartum
- Conducted in population where anemia and iron
  deficiency are prevalent
  Maternal and Child Hegerated Program

### **Study limitations**

- Study sample restricted to semi-urban setting who were able to afford hospital delivery
- Access to health care may have contributed to lower blood loss
- Some loss to follow-up experienced
  - Delivered prior to obtaining venous sample
  - Delivered at home, could not get to hospital in time
  - Did not stay through 24 hours postpartum





### **Research and programmatic Implications**

- Our findings likely underestimate the effect of anemia on blood loss in rural Africa, especially where anemia is untreated and in home births.
- Accurate measurement of blood loss can guide limits for "normal" blood loss and "excessive blood loss" which may vary by setting
- Consistency and accuracy of other measurement techniques vs. the gold standard needs further study
- Further exploration of the link between maternal anemia and postpartum hemorrhage





## Thank you (Asante sana)!

